Random Projections for Dimensionality Reduction in ICA

نویسندگان

  • Sabrina Gaito
  • Andrea Greppi
  • Giuliano Grossi
چکیده

In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ρ, defined as the ratio between the size k of the reduced space and the original one d, which guarantees a narrow confidence interval of such estimator with high confidence level. The derived dimensionality reduction rate depends on a system control parameter β easily computed a priori on the basis of the observations only. Extensive simulations have been done on different sets of real world signals. They show that actually the dimensionality reduction is very high, it preserves the quality of the decomposition and impressively speeds up FastICA. On the other hand, a set of signals, on which the estimated reduction rate is greater than 1, exhibits bad decomposition results if reduced, thus validating the reliability of the parameter β. We are confident that our method will lead to a better approach to real time applications. Keywords— Independent Component Analysis, FastICA algorithm, Higher-order statistics, Johnson-Lindenstrauss lemma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Linear ICA and Local Linear ICA for Mutual Information Based Feature Ranking

Feature selection and dimensionality reduction is important for high dimensional signal processing and pattern recognition problems. Feature selection can be achieved by filter approach, in which certain criteria must be optimized. By using mutual information (MI) between feature vectors and class labels as the criterion, we proposed an ICA-MI framework for feature selection. In this paper, we ...

متن کامل

On Point Sampling Versus Space Sampling for Dimensionality Reduction

In recent years, random projection has been used as a valuable tool for performing dimensionality reduction of high dimensional data. Starting with the seminal work of Johnson and Lindenstrauss [8], a number of interesting implementations of the random projection techniques have been proposed for dimensionality reduction. These techniques are mostly space symmetric random projections in which r...

متن کامل

Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.

Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal ...

متن کامل

An Assessment of the Impact of Dimensionality Reduction on the Speed and Accuracy of Hyperspectral Image Classification

This paper investigates the extent to which the accuracy and speed of classifying Hyperspectral remote sensing images are affected by the application of varying degrees of dimensionality reduction. Three methods have been used for dimensionality reduction: PCA, ICA and random band selection; SVM has been used for classification. The results have been evaluated on both natural and man-made scena...

متن کامل

Scalable Inference and Recovery from Compressive Measurements

Despite the apparent need for adaptive, nonlinear techniques for dimensionality reduction, random linear projections have proven to be extremely effective at capturing signal structure in cases where the signal obeys a low-dimensional model. Similarly, random projections are a useful tool for solving problems where the ultimate question of interest about the data requires a small amount of info...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006